
1.  STATISTICS VS.  DATA MINING

Data mining can be characterized as a

process of information or knowledge

extraction from data sets, which leads to

revealing and investigating systematic

associations among invidivual variables.  It

contains the exploratory data analysis,

descriptive modeling, classification, and

regression, while classification together with
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regression are commonly denoted as

predictive data mining.  The concept of data

mining can be described as the analytical

part of the overall process of extracting

useful information from data, which is

traditionally called knowledge discovery

(Fayyad et al. , 1996; Nisbet et al. , 2009;

Martinez et al. , 2011).  We can say that data

mining has the aim to extract information,

while knowledge discovery goes further and

aims at acquiring knowledge relevant for the

field of expertise; compare Fernandez (2003)

and Zvárová et al.  (2009).  Actually Soda et

al.  (2010) required data mining methods to

be dynamically integrated within knowledge

discovery approaches. 

In management applications, data mining

is often performed with the aim to extract

information relevant for making predictions

and/or decision making, which can be

described as selecting an activity or series of

activities among several alternatives.

Decision making integrates uncertainty as

one of the aspects with an influence on the

outcome.  The development of computer

technology has allowed to implement

partially or fully automatic decision support

systems, which can be described as very

complicated systems offering assistance with

the decision making process with the ability

to compare different possibilities in terms of

their risk.  The systems are capable to solve

a variety of complex tasks, to analyze

different information components, to extract

information of different types, and deduce

conclusions for management,financial, or

econometricapplications (Gunasekaran &

Ngai, 2012; Brandl et al. , 2006), allowing to

find best available decision within the

framework of the evidence-based

management (Briner, 2009). 

Unlike classical statistical procedures, the

data mining methodology does not have the

ambition to generalize its results beyond the

data summarized in a given database.  In data

mining, one does not usually assume a

random sample from a certain population

and the data are analyzed and interpreted as

if they constituted the whole population.  On

the other hand, the work of a statistician is

often based on survey sampling, which

requires also to propose questionnares, train

questioners, work with databases, aggregate

the data, compute descriptive statistics, or

estimating non-response.  Moreover, a

statistician commonly deals with observing a

smaller number of variables on relatively

small samples, which is another difference

from the data mining context. 

Removal of outliers is one of important

steps of validating the plausibility of a model

both in statistics and data mining. A common

disadvantage of popular data mining

methods (linear regression, classification

analysis, machine learning) is namely their

high sensitivity (non-robustness) to the

presence of outlying measurements in the

data.  Moreover, statisticians have developed

the robuststatistical methodology as an

alternative approach to some standard

procedures, which possess a robustness

(insensitivity) to the presence of outliers as

well as to standard distributional

assumptions.  Although the concept of robust

data mining describing a methodology for

data mining based on robust statistics has

been introduced (Shin et al. , 2007), robust

methods have not found their way to real

data mining applications yet. 

This paper proposes new highly robust

methods suitable for the analysis of data in

management applications.  We use idea of

implicit weighting to derive new alternative

multivariate statistical methods, which

ensuresa high breakdown point.  This paper

has the following structure.  Section 2 recalls
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the highly robust least weighted squares
method for estimating parameters in a linear
regression models.  Section 3 proposes a
robust cluster analysis method.  Section 4
proposes a robust estimation method for
logistic regression, which is used to define a
robust multinomial logistic classification in
Section 5.  Section 6 is devoted to robustness
aspects of neural networks and finally
Section 7 concludes the paper. 

2.  LEAST WEIGHTED SQUARES

REGRESSION

Because classical statistical methods
suffer from the presence of outlying data
values (outliers), robust statistical methods
have been developed as an alternative
approach to data modeling.  They originated
in 1960sas a diagnostic tool for classical
methods (Stigler, 2010), but have developed
to reliable self-standing procedures point
tailor-made to suppress the effect of data
contamination by various kinds of outliers
(Hekimoglu et al. , 2009).  This section
describes the least weighted squares
estimator, which is one of promising robust
estimators of parameters in the linear
regression model.  Its idea will be exploited
in the following sections. 

M-estimators represent the most widely
used robust statistical methods (Maronna et
al. , 2006).  However, as the concept of
breakdown point has become the most
important statistical measure of resistance
(insensitivity) against noise or outlying
measurements in the data (Davies & Gather,
2005), the M-estimators have been criticized
for their low breakdown point in linear
regression (Salibián-Barrera, 2006).  Only
recently, highly robust methods defined as

methods with a high breakdown have been
proposed. 

The least weighted squares estimator
(LWS) proposed by Víšek (2001) is a highly
robust statistical tool based on the idea of
down-weighting less reliable observations.
This estimator is based on implicit weighting
of individual observations.  The idea is to
assign smaller weights to less reliable
observations, without the necessity to
specify precisely which observations are
outliers and which are not. 

In the original proposal, the user  has to
select the magnitudes of the weights.  These
are assigned to particular observations only
after a permutation, which is automatically
determined during the computation of the
estimator.  However, more recent versions of
the LWS do not require the user to choose the
magnitudes of the weights.  Just recently,
Čížek (2011) proposed several adaptive
versions of the LWS estimator, including a
two-stage procedure with data-dependent
quantile-based weights. The estimator has a
high breakdown point and at the same time a
100 % asymptotic efficiency of the least
squares under Gaussian errors.  Its relative
efficiency is high (over 85 %) compared to
maximum likelihood estimators also under
various distributional models for moderate
samples, as evaluated in a numerical study
(Čížek, 2011).  Besides, compared to M-
estimators, the LWS estimator of regression
parameters does not require a simultaneous
estimation of the error variance, which is a
disadvantage of M-estimators losing a
computational simplicity. 

The LWS estimator is a weighted analogy
of the least trimmed squares (LTS) estimator
of Rousseeuw and van Driessen (2006), who
considered weights equal to 1 or 0 only.
However, the LTS estimator suffers from a
high sensitivity to small deviations near the
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center of the data, while the LWS estimator
possesses also a reasonable local
robustness(Víšek, 2001).  The computation
of the LWS estimator is intensive and an
approximative algorithm can be obtained as
a weighted version of the LTS algorithm
(Rousseuw and van Driessen, 2006).
Diagnostic tools for the LWS estimator in the
linear regression context (mainly for
econometric applications) were proposed by
Kalina (2011) andhypothesis tests
concerning the significance of LWS
estimators by Kalina (2012a).  Econometric
applications of robust statistical methods
were summarized by Kalina (2012b).  A
generalization of the LWS estimator for
nonlinear regression will be proposed in
Section 6. 4. 

3.  ROBUST CLUSTER ANALYSIS

Cluster analysis (clustering) is a
commonly used data mining tool in
management applications.  Examples of
using the cluster analysis include acustomer
segmentation (differentiation) based on
sociodemographic characteristics, life style,
size of consumption, experience with
particular products, etc.  (Mura, 2012).
Another application is the task of market
segmentationallowingto position products or
to categorize managers on the basis of their
style and strategy (Punj & Stewart, 1983;
Liang, 2005).  All such tasks solved by
grouping units into natural clusters at the
explorative stage of information extraction
are vital for a successful marketing or
management strategy. 

Cluster analysis is a general methodology
aiming at extracting knowledge about the
multivariate structure of given data.  It solves

the task of unsupervised learning by dividing
the data set to several subsets (clusters)
without using a prior knowledge about the
group membership of each observation.  It is
often used as an exploratory technique and
can be also interpreted as a technique for a
dimension reduction of complex multivariate
data.  Cluster analysis assumes the data to be
fixed (non-random) without the ambition for
a statistical inference.  We can say that it
contains a wide variety of methods with
numerous possibilities for choosing different
parameters and adjusting the whole
computation process. 

The most common approaches to
clustering include the agglomerative
hierarchical clustering and k-means
clustering, which both suffer from the
presence of outliers in the data and strongly
depend on the choice of the particular
method.  Some approaches are also sensitive
to the initialization of the random algorithm
(Vintr et al. , 2012).  Robust versions of the
clustering have been recently studied in the
context of molecular genetics, but they have
not penetrated to management applications
yet.  A robust hierarchical clustering was
proposed by García-Escudero et al.  (2009)
and a robust version of k-means cluster
analysis tailor-made for high-dimensional
applications by Gao and Hitchcock (2010).
It is also possible but tedious to identify and
manually remove outlying measurements
from multivariate data (Svozil, 2008). 

In this paper, we propose a new robust
agglomerative hierarchical cluster analysis
based on a robust correlation coefficient as a
measure of similarity between two clusters.
The Pearson correlation coefficient is a
common measure of similarity between two
clusters (Chae et al. , 2008).  We propose a
robust measure of distance between two
clusters based on implicit weighting (Kalina,
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2012a) inspired by the LWS regression
estimator. 

Algorithm 1: (Robust distance between
two clusters). 

Let us assume two disjoint clusters C1 and
C2 of p-variate observations.  Thedistance
dLWS (C1,C2) between the clusters C1 and C2

is defined by the following algorithm. 
1. Select an observation X=(X1,…,Xp)T

from C1 and select an observation
Y=(Y1,…,Yp)T from C2. 

2. Consider the linear regression model

Yi=β0 + β1 Xi + ei,   i=1,…p.                    (1)
3. Compute the LWS estimator in the

model (1).  The optimal weights determined
by the LWS estimator will be denoted by
w*=(w1,. . . ,wp)T. 

4. The LWS-distance between X and Y
denoted by dLWS (X,Y) will be defined as

where        is  the  weighted  mean  of X1,.
. . ,Xp and       is the weighted mean of Y1,. .
. ,Yp with the optimal weights w*. 

5. The distance dLWS (C1, C2) between
the clusters C1 and C2 is defined as max dLWS

(X, Y) over all possible observations X
coming from C1 and all possible
observations Y coming from C2. 

N ow we describe the whole procedure of
hierarchical bottom-up robust cluster
analysis.  The robust cluster analysis method
denoted by LWS-CA is defined in the
following way. 

Algorithm 2: (Robust cluster analysis
LWS-CA)

1. Consider each particular observation
as an individual cluster. 

2. Searchfor such a pair of clusters C1

and C2 which have the minimal value of the
robust distance dLWS (C1, C2). 

3. The pair of clusters selected in step 2
is joined to a single cluster. 

4. Repeat steps 2 and 3 until a suitable
number of clusters is found, using the gap
statistic criterion (Tibshirani et al. , 2001). 

TheLWS-CAmethod corresponds to a
single linkage clustering used together with a
robust version of the Pearson correlation
coefficient based on implicitly assigned
weights.  The stopping rule based on the gap
statistic compares the inter-cluster variability
with the intra-cluster variability in the data.
Alternatively, the user may require a fixed
value of the final number of resulting
clusters before the computation. 

4.  ROBUST LOGISTIC REGRESSION

The logistic regression is a basic tool for
modeling trend of a binary variable
depending on one or several regressors
(continuous or categorical).  From the
statistical point of view, it is the most
commonly used special case of a generalized
linear model.  At the same time, it is also
commonly used as a method for
classification analysis (Agresti, 1990). 

The maximum likelihood estimation of
parameters in the logistic regression is
known to be too vulnerable to the presence
of outliers.  Moreover, the logistic regression
does not assume errors in the regressors,
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which may be an unrealistic assumption in
many applications.  Outliers appear in the
logistic regression context quitecommonly as
measurement errors or can emerge as typing
errors both in regressors and the response
(Buonaccorsi, 2010).  This section proposes
a novel robust estimator for parameters of
logistic regression denoted based on the least
weighted squares estimator (Section 2) and
derive its breakdown point. 

Christmann (1994), who used the least
median of squares (LMS) method for
estimating parameters in the logistic
regression model and proved the estimator to
possess the maximal possible breakdown
point.  evertheless, the low efficiency of
the LMS estimator has been reported as
unacceptable; see Shertzer and Prager (2002)
for a management application.  Čížek (2008)
advocated highly robust estimation of
parameters of the logistic regression,
because they have the potential to have a
relatively low bias without a need for a bias
correction, which would be necessary for M-
estimators. A nonparametric alternative to
the logistic regression is known as the
multifactor dimensionality reduction
proposed by Ritchie et al.  (2001). 

Let us now consider the model of the
logistic regression with a binary response
Y=(Y1,…, Yn)T.   Its values equal to 1 or 0 can
be interpreted as a success (or failure,
respectively) of a random event.  The
probability of success for the i-th observation
(i=1,…,n) is modeled as a response of
independent variables, which can be either
continuous or discrete.  The regressors are
denoted as Xi=( X1,…, Xpi)T for i=1,…,n.
The conditional distribution of Yi assuming
fixed values of the regressors is assumed to
be binomial Bi(mi, πi), where mi is a known
positive integer and probability πi depends

on regression parameters β1,…,βp for
i=1,…,n through

.                   (3)

We introduce the notation

and

(4)

for i=1,…,n. 

Definition 2.  We define the least
weighted logistic regression (LWLR)
estimator in the model (3) in the following
way.  We consider the transformations (4),
where the unknown probabilities πi

(i=1,…,n) are estimated by the maximum
likelihood method.  The LWLR is defined as
the LWS estimator with the adaptive
quantile-based weights computed for the
data

(5)

The LWLR estimator has a high
breakdown point as evaluated in the
following theorem, which can be proven as
an analogy of the result of Christmann
(1994). 

Theorem 1. We assume the values mi are
assumed to be reasonably large.  Further, we
assume technical assumptions of Christmann
(1994).  Then, the breakdown point of the
LWLR estimator computed with the data-
dependent adaptive weights of Čížek (2011)

is equal to:

(6)
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where    denotes the integer part of n/2,

defined as the largest integer smaller or equal

to n/2. 
Let us discuss using the robust logistic

regression as a classification method into
two groups.  The observed data are
interpreted as a training data base with the
aim to learn a classification rule.  Let pi

defined by

(7)

denote the probability that the i-th
observation belongs to the group 1, where
(b1,. . . , bp)T is the LWLR estimator of (β1,. .
. , βp)T. Theoretical textbooks (e. g.
Jaakkola, 2013) commonly recommend to
use the logistic regression to classify a new
observation  to the group 1, if and only if

pi > 1/2,                                                 (8)

which is equivalent to

(9)

However, this may be very unsuitable in
some situations, especially if a large majority
of the training data belongs to one of the two
given groups. 

A more efficient classification rule is
obtained by replacing the classification rule
(9) by the rule pi > c, where the constantc is
determined in the optimal way, that it
minimizes the total classification error.  We
point out that it is equivalent to maximizing
the Youden’s index I (Youden, 1950) defined
as:

I = sensitivity + specificity – 1,              (9`)

where sensitivity defined as the probability
of a correct classification of a successful
observation and specificity is the probability
of a correct classification of an unsuccessful
observation.  The optimization of the
threshold c in the classification context is
common for neural networks, as it will be
described in Section 6. 2. 

5.  ROBUST MULTINOMIAL

LOGISTIC CLASSIFICATION

ANALYSIS

Classification analysis into several (more
than two) groups is a common task in
management applications.  We extend the
robust logistic regression estimator LWLR of
Section 5 to a robust multinomial logistic
classification analysis into several groups.
The new method is insensitive to the
presence of contamination in the data. 

First, we recall the multinomial logistic
regression, which is an extension of the
logistic regression (3) to a model with a
response with several different.  We assume
the total number of n measurements denoted
as (X11,…,X1n)T,…, (Xp1,…,Xpn)T.  Each of
them belongs to one of K different groups.
The index variable Y=(Y1,…,Yn)T contains
the code 1,…,K corresponding to the group
membership of each measurement.  We
consider a model assuming that Y follows a
multinomial distribution with K categories. 

Definition 3. The data are assumed as K
independent random samples of p-variate
data.  The multinomial logistic regression
model is defined as
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where P(Yi=k) denotes the probability that

the observation Yi belongs to the k-th group. 

Here each of the groups 1,…,K has its

own set of regression parameters, expressing

the discrimination between the particular

group and the reference group K.  We also

point out that the value

(11)

which compares the probability that the

observation Yi belongs to the k-th group with

the probability that Yi belongs to the l-th
group (k=1,…,K, l=1,. ,,,,K),can be

evaluated as

Our aim is to use the observed data as a

training set to learn a robust classification

rule allowing to assign a new observation

Z=(Z1,…,Zp)T to one of the K given groups.

As a solution, we define the robust

multinomial logistic classification analysis

based on a robust estimation computed

separately in the total number of K-1
particular models (10). 

Definition 4. In the model (10), let pk

denote the estimate of the probability that the

observation Z belongs to the k-th group for

k=1,…,K by replacing the unknown

regression parameters in (10) by their

maximum likelihood estimates.  Using the

notation

and

(13)

for i=1,…,n, the robust estimator is obtained

as the LWS estimator with adaptive quantile-

based weights in the model

(14)

The robust multinomial logistic

classification analysis (RMLCA) assigns a

new observation Z to the group k, if and only

if

pk ≥ pj for all k=1,…,K, j≠k.  (15)

6.  NEURAL NETWORKS

6. 1.  Principles of neural networks

Neural networks represent an important

predictive data miningtool with a high

flexibility and ability to be applied to a wide

variety of complex models (Hastie et al. ,

2001). They have become increasingly

popular as an alternative to statistical

approaches for classification (Dutt-

Mazumder et al. , 2011).  In management

applications, neural networks are commonly

used in risk management, market

segmentation, classification of consuming

spending patterns, sale forecasts, analysis of

financial time series, quality control, or

strategic planning; see the survey by

Hakimpoor et al.  (2011) for a full

discussion.  However, Krycha and Wagner

(1999) warned that most papers on

management applications ‘do not report

completelyhow they solved the problems at

hand by the neural network approach’. 

Neural networks are biased under the
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presence of outliers and a robust estimation
of their parameters is desirable (Beliakov et
al. , 2011).  In general, neural networks
require the same validation steps as
statistical methods, because they involve
exactly the same sort of assumptions as
statistical models (Fernandez, 2003).
Actually, neural networks need an evaluation
even more than the logistic regression,
because more complicated models are more
vulnerable to overfitting than simpler
models.  Unfortunately, a validation is often
infeasible for complex neural networks.  This
leads users to a a tendency to believe that
neural networks do not require any statistical
assumptions or that they are model-free
(Rusiecki, 2008), which may lead to a wrong
feeling that they do not need any kind of
validation. 

We mention also some other weak points
of training neural networks.  They are often
called black boxes, because their numerous
parameters cannot be interpreted clearly and
it is not possible to perform a variable
selection by means of testing the statistical
significance of individual parameters.
Moreover, learning reliable estimates of the
parameters requires a very large number of
observations, especially for data with a large
number of variables.  Also overfitting is a
common shortage of neural networks, which
is a consequence of estimating the
parameters entirely over the training data
without validating on an independent data
set. 

Different kinds of neural networks can be
distinguished according to the form of the
output and the choice of the activation
function and different tasks require to use
different kinds of networks.  In this work, we
consider two most common kinds of
multilayer perceptrons, which are also called
multilayer feedforward networks.  Their

training is most commonly based on the
back-propagation algorithm.  Section 7. 2
discusses neural networks for a supervised
classification task, i. e.  networks with a
binary output, and explains their link to the
logistic regression.  Section 7. 3.  disusses
neural networks for function approximation,
i. e.  networks wih a continuous output, and
studies a robust approach to their fitting.  A
new robust estimation tool suitable for some
types of such neural networks is described in
Section 7. 4 as the nonlinear least weighted
squares estimator. 

6. 2.  Neural networks for classification

We discuss supervised multilayer
feedforward neural networks employed for a
classification task.  The input data are
coming from K independent random samples
(groups) of p-dimensional data and the aim is
to learn a classification rule allowing to
classify a new measurement into one of the
groups.  In this section, we also describe the
connection between a classification neural
network and logistic regression. 

The network consists of an input and
output layer of neurons and possibly of one
or several hidden layers, which are mutually
connected by edges.  A so-called weight
corresponds to each observed variable.  This
weight can be interpreted as a regression
parameter and its value can be any real (also
negative) number.  In the course of the
process of fitting the neural network, the
weights connecting each neuron with one of
neurons from the next layers are optimized.
A given activation function is applied on the
weighted inputs to determine the output of
the neural network. 

First, let us consider a neural network
constructed for the task of classification to
two groups with no hidden layers.  The

17J.Kalina / SJM 8(1) (2013) 9 - 24



output of the network is obtained in the form

(16)

where x ∈ Rp represents the input data, R
denotes the set of all real numbers, w is the
vector of weights, and b is a constant
(intercept).  Simple neural networks usually
use the activation function g as a binary
function or a monotone function, typically a
sigmoid function such as the logistic
function or hyperbolic tangent. 

If the logistic activation function

(17)

is applied, the neural networks is precisely
equal to the model of logistic regression
(Dreiseitl & Ohno-Machado, 2002). This
special case of a neural network is different
from the logistic regression only in the
method for estimating the (regression)
parameters.  Moreover, if the hyperbolic
tangent activation functionas

(18)

the neural network without hidden layers is
again equal to the model of the logistic
regression.  Moreover, it can be easily
proven that g2(x) = 2g1(2x) + 1 for any real
x. 

An influence of outliers on classification
analysis performed by neural networks has
been investigated only empirically (e. g.
Murtaza et al. , 2010). Classification neural
networks are sensitive to the presence of
outliers, but a robust version has not been
proposed. For the classification to two
groups, the sensitivity of the neural networks
is a consequence of their connection to the

logistic regression.  Thanks to the connection
between neural networks and logistic
regression, the robust logistic regression
estimator LWLR (Section 5) represents at the
same time a robust method for fitting
classification neural networks with no
hidden layers. 

Moreover, references on the sensitivity
analysis of neural networks have not
analyzed other situations, which negatively
influence training neural networks (cf.
Yeung et al. , 2010).  An example is
multicollinearity, which is a phenomenon as
harmful for neural networks as for the
logistic regression. 

Neural networks for classification to K
groups are commonly used with one or more
hidden layers.  Such networks use a binary
decision in each node of the last hidden layer
driven by a sigmoid activation function.
Therefore, they are sensitive to the presence
of outliers as well as the networks for
classification to two groups. 

6. 3.  Neural networks for function

approximation

eural networks are commonly used as a
tool for approximating a continuous real
function.  In management, multilayer
feedforward networks are often used mainly
for predictions, e. g.  for modeling and
predicting market response (Gruca et al. ,
1999) or demand forecasting (Efendigil et al.
, 2009).  Most commonly, they use an
identical activation function, i. e.  they can be
described as

(19)

An alternative approach to function
approximation is to use radial basis function
neural networks.  ow we need to describe
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the back-propagation algorithm for function
approximation networks, which is at the
same time commonly used also for the
classification networks of Section 6. 2. 

The back-propagation algorithm for
neural networks employed for function
approximation minimizes the total error
computed across all data values of the
training data set.  The algorithm is based on
the least squares method, which is optimal
for normally distributed random errors in the
data (Rusiecki, 2008).  After an initiation of
the values of the parameters, the forward
propagation is a procedure for computing
weights for the neurons sequentially in
particular hidden layers.  This leads to
computing the value of the output and
consequently the sum of squared residuals
computed for the whole training data set.  To
reduce the sum of squared residuals, the
network is sequentially analyzed from the
output back to the input.  Particular weights
for individual neurons are transformed using
the optimization method of the steepest
gradient.  However, there are no diagnostic
tools available, which would be able to
detect a substantial information in the
residuals, e. g.  in the form of their
dependence, heteroscedasticity, or
systematic trend. 

A robust version of fittingmultilayer
feedforward networks for the task of
function approximation for contaminated
data was described only for specific kinds of
neural networks.  Rusiecki (2008) studied
neural networks based on robust multivariate
estimation using the  minimum covariance
determinant estimator.  Chen and Jain (1994)
investigated M-estimators and Liano (1996)
studied the influence function of neural
networks for function approximation as a
measure of their robustness. 

Jeng et al.  (2011) or Beliakov et al.

(2012) studied neural networks based on
nonlinear regression.  Then, instead of
estimating the parameters of their neural
networks by means of the traditional
nonlinear least squares, they performed the
LTS estimation. In this paper, we propose an
alternative approach based on the LWS
estimator.  Because such approach is general
and not connected to the context of neural
networks, we present the methodology as a
self-standing Section 6. 4. 

6. 4.  Nonlinear least weighted squares

regression

Let us consider the nonlinear regression
model

Yi=f(β1X1i+…+βpXpi)+ei, i=1,…,n,      (20)

where Y=(Y1,…,Yn)T is a continuous
response, (X11,…,X1n)T,…, (Xp1,…,Xpn)T

regressors and f is a given nonlinear function.
Let u(i)(b) denote a residual corresponding to
the i-th observation for a given estimator
b=(b1,…,bp)T∈Rp of the regression
parameters (β1,…, βp)T.  We consider the
residuals arranged in ascending order in the
form

(21)

We define the least weighted squares
estimator of the parameters in the model (20)
as

(22)

where the argument of the minimum is
computed over all possible values of
b=(b1,…,bp)T and where w1,…,wn are
magnitudes of weights determined by the
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user, e. g.  linearly decreasing or logistic
weights (Kalina, 2012a).  N ow we describe
the algorithm for computing the solution of
(23) as an adaptation of the LTS algorithm
for the linear regression (cf.  Rousseeuw &
van Driessen, 2006). 

Algorithm 3: (Nonlinear least weighted
squares estimator). 

1.  Set the value of a loss function to +∞.
Select randomly p points, which uniquely
determine the estimate b of regression
parameters β. 

2.  Evaluate residuals for all observations.
Assign the weights to all observations based
on (21). 

3.  Compare   the   value   of                

computed with the resultingweights with the
current    value    of the    loss    function.     If

is larger, go to step 4.  Otherwise

go to step 5. 

4.  Set  the  value  of  the  loss  function

to                 and   store   the   values   of   the 

weights.  Find the nonlinear regression
estimator of β1,…,βp by weighted least
squares (Seber & Wild, 1989) using these
weights.  Go back to steps 2 and 3. 

5.  Repeatedly (10 000 times) perform
steps 1 through 4.  The output (optimal)
weights are those giving the global optimum

of  the  loss  function              over  all

repetitions of steps 1 through 4. 

7.  CONCLUSION

This paper fills the gap of robust
statistical methodology for data mining by
introducing new highly robust methods

based on implicit weighting. Robust
statistical methods are established as an
alternative approach to certain problems of
statistical data analysis. 

Data mining methods are routinely used
by practitioners in everyday management
applications.  This paper persuades the
readers that robustness is a crucial aspect of
data mining which has remained only a little
attention so far, although sensitivity of data
mining methods to the presence of outlying
observations has been repeatedlyreported as
a serious problem (Wong, 1997; Yeung et al.
, 2010).  On the other hand, an experience
shows that too sophisticated data mining
methods are not very recommendable for
practical purposes (Hand, 2006) and simple
methods are usually preferable. 

This paper introduces new tools for the
robust data mining using an intuitively clear
requirement to down-weight less reliable
observations. The robust cluster analysis
LWS-CA (Section 3), the robust logistic
regression LWLR (Section 4), and the robust
multinomial logistic classification analysis
(Section 5) are examples of newly proposed
methods which can be understood as part of
the robust data mining framework. 

The logistic regression is commonly
described as a white-box model (Dreiseitl &
Ohno-Machado, 2012), because it offers a
simpler interpretation compared to the neural
networks characterized as a black box.
Because robust methods have been mostly
studied for continuous data, our proposal of
robust logistic regression is one of
pioneering results on robust estimation in the
context of discrete data. 

In management applications, neural
networks are quite commonly used, but still
less frequently compared to the logistic
regression.  Also neural networks are
sensitive to the presence of outlying
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measurements.  This paper discusses the
importance of robust statistical methods for
training neural networks (Section 6) and
proposes a robust approach to neural
networksfor function approximation.  Such
approach still requires an extensive
evaluation with the aim to detect a possible
overfitting by means of a cross-validation or
boostrap methodologies.  Moreover, robust
neural networks for classification purposes
based on robust back-propagation remains to
be an open problem. A classification neural
network is characterized as a generalization
of the logistic regression, although the two
models do not use the same method for
parameter estimation.  Another possibility
for a robust training of classification neural
networks would be to propose a robust back-
propagation based on the minimum weighted

covariance determinant estimator proposed
by Kalina (2012b). 

In this paper, we do not discuss a robust
information extraction from high-
dimensional data, which represents a very
important and complicated task.  It is true
that numerous data mining methods suffer
from the so-called curse of dimensionality.
Also neural networks have not been adapted
for high-dimensional data; it can be rather
recommended to use alternative approaches
for a high-dimensional supervised
classification (e. g.  Bobrowski & Łukaszuk,
2011). 
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ВИСОКО РОБУСТНИ МЕТОДИ ИСТРАЖИВАЊА ПОДАТАКА 

Јан Калина

Извод

Овај се рад бави високо робустним методама екстракције информација из података, уз
посебну пажњу посвећену методима погодним за примену у менаџменту. Осетљивост
доступних метода истражива, на присуство екстремних резултата мерења у полазној бази, је
дискутована као основни недостатак разматраних метода. Овај рад предлаже неколико новијих
робустних метода истраживања података, које се заснивају на идеји имплицитних тежинских
коефицијената индивидуалних вредности података. Посебно се предлаже новији робустни
метод хијерархијске анализе кластера, који је популарaн метод анализе података и учења
мрежа. Даље, предлаже се робустни метод за процену параметара током логистичке регресије.
Ова идеја се шири ка робустној мултиномијалној логистичкој анализи класификације. На
крају, дискутује се осетљивост неуронских мрежа на присуство шума екстремних података у
полазној бази. Предлаже се метод робустног тренинга неуронских мрежа у циљу
апроксимације функције, која има форму робустног алата процене у нелинеарној регресионој
анализи.

Кључне речи: Истраживање података, Робустна статистика, Вишедимензиони подаци, Анализа
кластера, Логистичка регресија, Неуронске мреже
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